
Migrating code from ARM to ARM64
Kévin Petit <kevin.petit@arm.com>

LPC14 - 17/10/2014

1



Outline
Writing portable code

Best practises
Type promotion
How do I migrate?

ARM vs. ARM64
A few definitions
Comparing AArch32 and AArch64
Return instruction
Stack pointer and zero register
No load multiple, only pairs
LDAR / STLR
Conditional execution example
NEON
Legacy instructions

References

2



Outline

Writing portable code
Best practises
Type promotion
How do I migrate?

ARM vs. ARM64

References

3



Writing portable code
Best practises

n No assumptions about the type sizes
n Magic numbers
n size_t and ssize_t
n printf formats (%zu, %zd, etc)
n Beware of shifts
n Structure padding / alignment
n And of course: sizeof(int) != sizeof(void*)

4



Writing portable code
Type promotion

n C/C++ have internal promotion rules (size and/or sign)
n int + long -> long
n unsigned + signed -> unsigned
n If the second conversion (loss of sign) is carried out before the second (promotion

to long) then the result may be incorrect when assigned to a signed long.

n Complicated, even experienced programmers get caught
n Understand the order

5



Writing portable code
Type promotion

Consider this example, in which you would expect the result -1 in a:

long a;
int b;
unsigned int c;

b = -2;
c = 1;
a = b + c;

n 32-bit: a = 0xFFFFFFFF (-1)
n 64-bit: a = 0x00000000FFFFFFFF (232 − 1)

n Not what you expect
n The result of the addition is converted to unsigned

before it is converted to long

Solution: cast to 64-bit before the cast to unsigned

6



Writing portable code
Type promotion

long a;
int b;
unsigned int c;

b = -2;
c = 1;
a = (long) b + c;

n 32-bit: a = 0xFFFFFFFF (-1)
n 64-bit: a = 0xFFFFFFFFFFFFFFFF (-1)

n Calculation is now all carried out in 64-bit
arithmetic

n The conversion to signed now gives the correct
result

7



Writing portable code
How do I migrate?

A mix of:
n Recompile
n Rewrite

n Better use of 64-bit
n An opportunity to clean the code

8



Outline
Writing portable code

ARM vs. ARM64
A few definitions
Comparing AArch32 and AArch64
Return instruction
Stack pointer and zero register
No load multiple, only pairs
LDAR / STLR
Conditional execution example
NEON
Legacy instructions

References
9



ARM vs. ARM64
A few definitions

ARMv8-A architecture:
n AArch64 is its 64-bit execution state

n New A64 instruction set
n AArch32 is its 32-bit execution state

n Superset of ARMv7-A
n Compatible
n Can run ARM®, Thumb® code

10



ARM vs. ARM64
Comparing AArch32 and AArch64

n Presenting only userspace
n See Rodolph Perfetta’s ”Introduction to A64” presentation

11



ARM vs. ARM64
Return instruction

PC not an accessible register anymore

AArch32
MOV PC, LR
or
POP {PC}
or
BX LR

AArch64
RET

12



ARM vs. ARM64
Stack pointer and zero register

n Register no. 31
n Zero register

n xzr or wzr
n Reads as zero
n A way to ignore results

n Stack pointer
n 16-byte aligned (configurable but Linux does it this way)
n No multiple loads
n Only a few instructions will see x31 as the SP

13



ARM vs. ARM64
No load multiple, only pairs

AArch32
PUSH {r0, r1, r2, r3}

AArch64
STP w3, w2, [sp, #-16]! // push first pair

// create space for second
STP w1, w0, [sp, #8] // push second pair

Keep SP 16-byte aligned

14



ARM vs. ARM64
LDAR / STLR

AArch32
LDR
STR
DMB
LDR
STR

AArch64
LDR ; these two accesses may be observed after the LDAR
STR
LDAR ; “”barrier which affects subsequent accesses only
STR ; this access must be observed after LDAR

Similarly:
LDR ; this access must be observed before STLR
STLR ; “”barrier which affects prior accesses only
LDR ; these accesses may be observed before STLR
STR

15



ARM vs. ARM64
Conditional execution example

C
int gcd(int a, int b) {

while (a != b) {
if (a < b) {

a = a - b;
} else {

b = b - a;
}

}
return a;

}

AArch32/T32
gcd:

CMP r0, r1
ITE
SUBGT r0, r0, r1
SUBLT r1, r1, r0
BNE gcd
BX lr

AArch64
gcd:

SUBS w2, w0, w1
CSEL w0, w2, w0, gt
CSNEG w1, w1, w2, gt
BNE gcd
RET

16



ARM vs. ARM64
Conditional execution example

So, how do I migrate that?

Short answer:
n You’re on your own, be clever

More interesting answer:
n Don’t attempt direct translation

n Won’t work in a majority of cases
n Even if it does, it is usually a bad idea

n Opportunity for new optimisations

17



ARM vs. ARM64
NEON

n Part of the main instruction set / no longer optional
n Set the core condition flags (NZCV) rather than their own

n Easier to mix control and data flow with NEON

AArch32
vadd.u16 d0, d1, d2

AArch64
add v0.4h, v1.4h, v2.4h

18



ARM vs. ARM64
NEON

AArch32: 16 x 128-bit
registers

AArch64: 32 x 128-bit
registers

..
s3

.
s2

.
s1

.
s0

.

d1

.

d0

.

q0

.

127

.

63

.

31

.

0..
s0

.

d0

.

q0

.

127

.

63

.

31

.

0

19



ARM vs. ARM64
NEON

n Intrinsics are mostly compatible
n Assembly will need a translation and/or rewrite

n Scripts
n Register aliasing can will get in the way

20



ARM vs. ARM64
Legacy instructions

n SWP and SWPB
n SETEND
n CP15 barriers
n IT, partially
n VFP short vectors
n …
n Emulated, slow, (possibly broken for some cases)

If you can avoid them, please do.

21



Outline

Writing portable code

ARM vs. ARM64

References

22



References

n Porting to ARM 64-bit, Chris Shore
n ARM C Language Extensions
n ARM Architecture Reference Manuel
n ARMv8 Instruction Set overview

23

http://community.arm.com/docs/DOC-8453
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053b/IHI0053B_arm_c_language_extensions_2013.pdf


Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured
may be trademarks of their respective owners.

24



Q&A

25


	Writing portable code
	Best practises
	Type promotion
	How do I migrate?

	ARM vs. ARM64
	A few definitions
	Comparing AArch32 and AArch64
	Return instruction
	Stack pointer and zero register
	No load multiple, only pairs
	LDAR / STLR
	Conditional execution example
	NEON
	Legacy instructions

	References

